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Normal-mode decomposition for the optical response of cylinder clusters

A. J. Reuben and G. B. Smith
Department of Applied Physics, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007, Austr

~Received 18 August 1997!

We present a powerful technique that generates the complete normal-mode representation for the two-
dimensional quasistatic response ofany finite cluster of nonintersecting cylinders. We initially study two
particular structures, a rectangular and then a triangular arrangement of cylinders. In each case a superposition
technique involving two coordinate frames is used to obtain eigenfunction expansions for the induced electro-
static potential. Imposition of boundary conditions at each cylinder surface generates a system of equations for
the expansion coefficients in which optical and geometric factors can be trivially separated. This produces a
so-called structure matrix whose eigenvalues determine the resonance positions for the total response. The
weights for these uncoupled and independent resonances are also readily calculated. Predicted results for the
two chosen arrangements are then given. We conclude by showing how the technique is extended to cover
general finite clusters of nonintersecting cylinders.@S1063-651X~98!06907-4#

PACS number~s!: 41.20.Cv, 78.20.Bh, 78.20.Ci, 02.30.Em
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I. INTRODUCTION

Interest in the optical and electrical transport properties
composite materials has a long history@1#. The standard av-
eraging methods for random arrays such as the Maxw
Garnet@2#, Lorentz-Lorenz@3,4#, Bruggeman, and Clausius
Mossotti formulations are essentially dipole theories w
limited applicability. Interest has come to center on the qu
tion of the importance of long-range interactions for bo
ordered and disordered particulate arrays as well as on
effect of a close approach between individual particles. O
way of gaining insight into such questions is to consid
finite clusters. In particular, one would like to understa
how a given geometric arrangement of particles determ
the polarizability. In general the most accessible proble
seem to be those involving ordered arrays of infinite ext
or finite clusters that rarely involve more than two particle
The generallyad hocmethods used in these instances ha
tended to employ imaging or conformal mapping metho
In all but a handful of these approaches major disadvanta
tend to surface. Moreover, the very general formalisms
have appeared are rarely of practical use in concrete s
tions. Only in a few have the individual resonances for
polarization been determined together with their correspo
ing strengths@5,6#. In this work we solve this problem fo
any finite cluster of circular cylinders.

Although for the general dynamic problem there is as
no general theory relating the optical properties of a comp
ite to its geometry, in the quasistatic realm the closest th
to this is the Bergman spectral representation@7#. In this
formulation the average dielectric function~per unit area! of
a two-component system of relative dielectrice has the rep-
resentation

^x&5(
n

gn

x211Ln
, x5e21, ~1!

where the spectral weightsgn and depolarization factorsLn
satisfy
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gn>0, 0<Ln<1, ~2!

(
n

gn51. ~3!

In Secs. III and IV a technique will be applied to bo
rectangular and triangular clusters of cylinders that yie
complete normal-mode Bergman decompositions in e
case. Moreover, there are no restrictions on the dielec
constants of either host or inclusion. Hence it is expected
this approach, which will be extended to general clusters
Sec. VI, should find wide application.

The technique used here always leads to an explicit Be
man decomposition for the polarizability. This is because
system of equations defining the coefficients in the se
expansion for the external field takes the following form@5#:

~nI1S!•X5Y, ~4!

where

n52122x21 ~5!

andX is the sought-after vector of potential coefficientsxi ,
Y a vector of constantsyi , I the unit matrix, andS the
so-calledstructure matrix, which only depends on the geo
metric arrangement of the cylinders in the cluster.

Diagonalizing the structure matrixS leads to

U21
•S•U5T, ~6!

whereU and its inverse are matrices of elementsui j andūi j ,
respectively, andT is the diagonal matrix whose elemen
ared i j t j , thet i being the eigenvalues ofS. Consequently Eq.
~4! becomes

~nI1T!•X85Y8, ~7!

where
1101 © 1998 The American Physical Society
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HX8
Y8J 5U21

• HX
YJ . ~8!

Solving Eq.~7! for X8 and then applying Eq.~8! leads to

xi5(
j ,k

uikūk jy j

n1tk
. ~9!

The polarizability will be found by determining the 1/r co-
efficient in the far-field expansion of the induced extern
potential. As will be shown in the following sections, th
will turn out to be a linear combination of the potential c
efficients. Hence for some sequence of positive constanf i
we will obtain

^x&5(
n

gn8

n1tn
, ~10!

where

gn85(
i , j

f iuinūn jy j . ~11!

We thus obtain the full Bergman representation~1! with
spectral weights and depolarization factors given by

gn5 1
2 gn8 , Ln5 1

2 ~12tn!. ~12!

All that then remains to be done is to obtain the key equa
~4!, determine the eigenvalues ofS, and then insert the ap
propriate constantsf i .

We shall exemplify the technique by applying it to a re
angular and then to a triangular cluster of identical cylinde
We consider the infrared limit for which an electrostatic a
proach to the problem of small particles in a constant u
form electric field is sufficient. In such a limit the wave
length of the external field is assumed to be much gre
than the particle diameters and the distances separating
particles. In this situation the approach outlined above is
plicable and yields a seminumerical solution for any desi
number of resonance positions and corresponding weig
In both the rectangular and triangular clusters the ma
equation~4! representing the truncated system of equati
for the induced potential coefficients will be obtained.
Sec. V we will analyze the eigenvalue spectra and the co
sponding sets of weights for various possible cylinder
rangements in these two cases. We now proceed to intro
the basic background concepts.

II. METHODOLOGY

We shall build on recently developed techniques that h
all given insights into the responses of either a pair or
infinite array of cylindrical inclusions@8–11#. As in these
earlier studies, the procedure adopted here can be mos
cidly presented by working throughout in terms of approp
ate complex variables. This also provides the possibility
making a more concise presentation of the mathematical
chinery. Moreover, by obtaining the potential induced
any one given field direction as the real part of a comp
series expansion, all other information is also found. T
corresponding imaginary part of the induced potential w
l
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generate the flux lines for this direction, while the replac
ment of dielectric constants with their reciprocals will aut
matically produce the potential for the orthogonal directi
~Keller’s theorem@12#!. Together these two solutions ca
then provide polarizations for arbitrary field directions sim
ply by combining components of each in varying propo
tions.

The key to the following approach is to note that t
induced electrostatic potentials are harmonic functions
vanish at infinity and hence thatthe sum of any two such
functions is again a valid outer potential. We thus partition
the whole cluster into a set of subclusters and define
‘‘local’’ coordinate frame for a given subcluster to be
frame that contains a coordinate contour representing
boundary~or boundaries! of the cylinder~s! in the given sub-
cluster. We write down inner and outer potential expansio
for each subcluster in their respective local coordinates. E
subcluster will thus contribute its own local external pote
tial and the total induced potential will be the sum of the
All that remains to be done is to satisfy the appropria
boundary conditions at each cylinder surface. The sets
coefficients are found from the system of equations~4! gen-
erated by successive imposition of the boundary conditi
within each subcluster. The crucial feature of this approac
the ability to reexpand each local eigenfunction expansion
terms of the eigenfunctions in every other local variable
such a way that the resulting series converge on each c
der boundary.

We now consider an applied field of unit strength acti
along the horizontal axis. At all cylinder boundaries the fo
lowing matching conditions must be satisfied by the ou
(f (1)), inner (f (2)), and applied (f (app)) potentials:

f~app!1f~1!5f~2!, ~13!

]f~app!

]n
1

]f~1!

]n
5e

]f~2!

]n
. ~14!

Our approach will be to use the above-mentioned superp
tion technique with subclusters containing either a single c
inder or a pair of cylinders. The local coordinate frames c
responding to these subclusters will be the polar a
bicylindrical frames, respectively@10#. The Laplace equation
in such frames is unchanged and so its solutions will be
usual combinations of hyperbolic and trigonometric fun
tions in the transformed variables@13#. The bicylindrical co-
ordinate frame is illustrated in Fig. 1.

III. RECTANGULAR CLUSTER

We now consider the rectangular array consisting of
four identical unit cylinders shown in Fig. 2. The horizont
and vertical distances separating the cylinder centers
given by 2d and 2b, respectively. The external field direc
tion will be along the horizontal (x) axis and so we introduce
the complex variablez5x1 iy and express the applied po
tential everywhere as the real part of

f~app!5z. ~15!

We shall consider the response for this geometry as resu
from the interaction between the upper and lower cylind
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pairs. The local coordinate system for the upper pair will
the transformed variablew1 where

w15u11 iv15
1

2a
ln

z2 ib1a

z2 ib2a
, ~16!

which is just the bicylindrical frame shifted upwards fro
the x axis by an amountb. Analogously the correspondin
local coordinate system for the lower pair will be genera
by the transformation

w25u21 iv25
1

2a
ln

z1 ib1a

z1 ib2a
. ~17!

FIG. 1. The bicylindrical coordinate frame showing contours
constantu ~solid! and constantv ~dashed!. The boundaries of the
unit cylinders centered on thex axis atd561.1 are shown in bold.

FIG. 2. A rectangular arrangement of circular unit cylinde
The cylinders are centered at the points (6d,6b). The cluster is
partitioned into an upper and lower pair~each shown boxed!, which
have respective bicylindrical coordinate frames,w6 , assigned to
them. The corresponding inner (f6

(2)) and outer (f6
(1)) potentials

are indicated. The total induced outer potential,f, is the sum of the
individual outer potential contributions.
e

d

For cylinder pairs with center-to-center separation of 2d the
equation defining the boundary of the right-hand unit cyl
der will be given byu5u1 where@10#

a5Ad221, u15
1

2a
ln~a1A11a2!. ~18!

The total outer potentialf will be taken as the sum of the
outer potentials around the upper and lower pairs,f1

(1) and
f2

(1) , respectively. Moreover, these potentials will each
eigenfunction expansions in terms of their respective lo
variables,w6 . Due to the presence of the other pair, t
individual outer potentials,f6

(1) , will not be symmetric
about their respective horizontal axes~the lines y56b!.
These local outer potentials must therefore contain term
both sin 2anv and cos 2anv and will thus be given by the
real parts of the following expressions:

f6
~1!5 (

n51

`

An
6sinh 2anw62 iBn

6cosh 2anw6 . ~19!

The same symmetry considerations generate potentials v
inside the upper and lower right-hand cylinders. These w
be the real parts of

f6
~2!5 (

n51

`

~Cn
62 iD n

6!e22anw6. ~20!

The total induced~outer! potential will then be given by the
real part of

f5f1
~1!1f2

~1! . ~21!

There are thus eight coefficients in all. However, since
functions cosh 2anw6 are even inz6 ib, only the coeffi-
cients An

6 of the functions sinh 2anw6 need to be deter-
mined explicitly in order to find the polarizability. The mag
nitudes of the coefficientsBn

6 reflect the degree o
interaction between the pairs and vanish asb→`. There are
four boundary conditions, two on the upper cylinder pair a
two on the lower pair. Each of these equations will invol
series in both cos 2anv6 and sin 2anv6 . These can thus in
turn be separated into two equations and so the total num
of equations becomes eight, as required.

The procedure for now building the system of equatio
which defines the coefficients is successively to match
potentialf and its normal derivative]f/]n with the appro-
priate internal potentials across the upper and lower cylin
pair boundaries. In the former case everything is to be
pressed in terms of the upper variables,w1 , and in the latter,
in terms of the lower variables,w2 . Due to the symmetry of
the problem about the horizontal axis, each upper coeffic
will mirror the corresponding lower one. In fact, once th
matching is performed on the upper pair, the correspond
equations for the lower matching can be found by mer
replacingb with 2b everywhere. It will be found convenien
to use the following definitions:

r5A11a2/b2, Ã5tan21
a

b
. ~22!

f

.
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So, in matching on the upper pair, the variable in wh
we work isw1 . The eigenfunction expansion for the applie
potential z is found from Eq.~16!. To within a constant
factor it is given by@10#

f~app!52a(
n51

`

e22anw1. ~23!

We must now express the exponentials inw2 in terms of the
eigenfunctionse22akw1 in Eq. ~23!. We have from Eqs.~16!
and ~17! that

e2anw25rne2 inÃ S 12 s/r2

12s D n

, ~24!

where

s5S 11
a

b
i De22aw1. ~25!

We would like to be able to expand the expression~24! in
the appropriate powers ofs such that the result converge
along the upper right-hand cylinder. Now it turns out that t
expression in brackets in Eq.~24! is effectively the generat
ing function for the so-called Meixner polynomials@14#. For
uju,min(1,ucu), we have@14,15#

S 12 j/c

12j D n

5 (
k50

`

mn,k~c!jk, ~26!
d

r

s

p
ra

u

e

where

mn,k~c!5nG~k11!S 12
1

cDF2,1S 12k,12n;2;12
1

cD ,

~27!

with the F2,1(a,b;c;z) denoting the Gaussian hypergeome
ric functions@15#. Applying Eq.~26! to both Eq.~24! and its
reciprocal produces

e62anw256nS 12
1

r2D r6ne7 inÃ

3 (
k50

`

F2,1S 12k,17n;2;12
1

r2D rkeikÃe22akw1.

~28!

This immediately leads to the following expansions for t
hyperbolic functions inw2 :

H sinh 2anw2

cosh 2anw2
J 5 (

k50

`

~Gn,k
6,c1 iGn,k

6,s!e22akw1, ~29!

where
G
n,k
6,$s

c%
5G

n,k
6,$s

c%
~r,Ã!5

n

2 S 12
1

r2D H rk1nF2,1S 12k,12n;2;12
1

r2D H cos
sinJ „~k2n!Ã…6rk2nF2,1S 12k,11n;2;12

1

r2D
3H cos

sinJ „~k1n!Ã…J . ~30!
air

th
The real parts of the hyperbolic functions~29! will thus con-
tain contributions from both sin 2akv1 and cos 2akv1 . In
fact, the complex contributions in the coefficients embo
the interaction between the upper and lower pairs and
b→` (Ã→0) the termsGn,k

6,s in Eq. ~29! will tend to zero.
The proof that the expansions~29! converge on the uppe
right-hand unit cylinder appears in Appendix A.

We can now write down the boundary condition~13!
along the upper right-hand cylinder (u15u1) using Eqs.
~19! and ~20! for f1

(1) andf1
(2) , respectively, Eqs.~19! and

~29! for f2
(1) , and Eq.~23! for f (app). By taking real parts in

the resulting equation we will obtain two sets of terms, tho
multiplying sin 2akv1 and those multiplying cos 2akv1 .
Since these are independent eigenfunctions, we can dro
outer summation and split the two sets into two sepa
equations. The second boundary condition, Eq.~14!, effected
here by taking derivatives with respect tou1 , will similarly
lead to another two equations. Combining these four eq
tions to eliminateCn

1 andDn
1 then leads to
y
as

e

the
te

a-

Ak
1~n1mk!2 (

n51

`

G̃n,k
1,cAn

22 (
n51

`

G̃n,k
2,sBn

252amk,

~31!

Bk
1~n1mk!2 (

n51

`

G̃n,k
1,sAn

21 (
n51

`

G̃n,k
2,cBn

250, ~32!

where

G̃n,k5mkGn,k . ~33!

To obtain the two analogous equations on the lower p
of cylinders (u25u1) we everywhere replaceb with 2b.
This generates a pair of equations analogous to Eqs.~31! and
~32! for the lower cylinder pair, which, when compared wi
Eqs.~31! and ~32!, immediately implies
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An
15An5An

2 , Bn
15Bn52Bn

2 . ~34!

Writing the system Eqs.~31!–~34! in matrix form leads to
the truncated analog of Eq.~4!. Using the subscriptm to
denote truncation to orderm, we obtain the following for the
coefficientsAk andBk :

~nI2m1Sm
~rect!!•Xm5Ym , ~35!

whereIm denotes them3m unit matrix,

Xm5S Am

¯

Bm

D , Ym52S Km

¯

Om

D ~36!

and the structure matrix is

Sm
~rect!5S Em2G̃m

1,c

¯

2G̃m
1,s

]

]

]

G̃m
2,s

¯

Em2G̃m
2,c

D ~37!

where

Em5S m
0
]

0

0
m2

�

¯

¯

�

�

0

0
]

0
mm
D , Km52aS m

m2

]

mm
D ,

~38!

with Am andBm denoting the vectors of coefficientsAi and
Bi , respectively, theG̃6,p (p5c,s) being matrices of ele-
mentsG̃i , j

6,p andOm the null column vector.
The total polarizability of the rectangular cluster will b

made up of the sum of the upper and lower cylinder p
contributions and will only come from the sinh 2anw terms
in Eq. ~19!. So, using Eq.~34!, we obtain@10#

^x& rect52a(
n51

`

nAn . ~39!

The spectral decomposition for the rectangular cluster is t
Eq. ~1! with

gn54a2(
i 51

m

(
j 51

m

im juinūn j , Ln5 1
2 ~12tn!, ~40!

for n51,...,2m, where theui j andūi j are the elements of th
matricesU and Ū which diagonalize the structure matr
Sm

(rect) and thetn are the eigenvalues of this matrix.

IV. TRIANGULAR CLUSTER

For the triangular arrangement of unit cylinders shown
Fig. 3 we shall again consider an externally applied fi
acting along thex axis. This time we shall use a polar fram
for the upper cylinder and a bicylindrical one for the low
pair. For the upper cylinder centered atz5 ib we have

w15 ln~z2 ib !5u11 iv15 ln r 1 iu, ~41!

while for the lower pair aligned along thex axis at the points
z56d we have
ir

s

d

w25
1

2a
lnS z1a

z2aD5u21 iv2 . ~42!

The boundary of the upper unit cylinder is given byu150
(r 51) while for the lower right-hand cylinder we again hav
Eq. ~18!.

Proceeding as for the rectangular arrangement, we de
the two local outer potentials. Each will possess left-rig
symmetry only and so as before there will be two coe
cients in each eigenfunction expansion. In particular, the
per expansions will contain terms in both sinku and cosku.
For the upper cylinder the appropriate form is thus the r
part of

f1
~1!5 (

n51

`

An
1e2~2n21!w12 iBn

1e22nw1, ~43!

while for the lower pair it is, as before, the real part of

f2
~1!5 (

n51

`

An
2sinh 2anw22 iBn

2cosh 2anw2 , ~44!

and so the total induced potential for the triangular arran
ment will be the real part of

f5f1
~1!1f2

~1! . ~45!

We now write down the complex potentials inside the upp
cylinder,

f1
~2!5 (

n51

`

Cn
1e~2n21!w12 iD n

1e2nw1, ~46!

and inside the lower~right-hand! cylinder,

f2
~2!5 (

n51

`

~Cn
22 iD n

2!e22anw2. ~47!

FIG. 3. A triangular arrangement of circular unit cylinders. T
upper cylinder is centered on they axis at the point (0,b) while the
lower pair of cylinders is centered at the points (6d,0) on thex
axis. The cluster here is partitioned into two subclusters~each
shown boxed! with a polar frame,w1 , used for the upper cylinder
and a bicylindrical frame,w2 , used for the cylinder pair lying on
the x axis. Inner (f6

(2)) and outer (f6
(1)) potentials are indicated

The total induced outer potential,f, is the sum of the individual
outer potential contributions.
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The matching procedure will occur as before with success
matching off @Eq. ~45!# and ]f/]n first along the upper
cylinder boundary~with f1

(2)! and then along the lower cyl
inder boundaries~with f2

(2)!. Due to the asymmetry of the
cylinder arrangement across the horizontal, the neat co
spondence between upper and lower coefficients seen in
rectangular case will not appear in this triangular arran
ment.

For the boundary conditions on the upper cylinder
write everything in terms of the upper frame variab
namelyw1 . The applied potential, written in terms ofw1

from Eq. ~41!, is, to within a constant, just

f~app!5ew1. ~48!

We now expand the hyperbolic functions~44! in terms of the
eigenfunction~48!. We have from Eqs.~41! and ~42! that

e2anw25snS 12 s/s

12s D n

, ~49!

where

s5
ew1

a2 ib
, s52

a1 ib

a2 ib
. ~50!

Sinceusu51 and on the upper unit cylinderuew1u51 the use
of the expansion ~26! will be permissible wheneve
a21b2>1. For nonintersecting cylindersa21b2>3 and so
the expansion of Eq.~49! using Eq.~26! is always possible
on the upper cylinder.

Using Eq.~26! to expand Eq.~49! thus leads to

e62anw25 (
k50

`

Pn,k
6 ~a,b!ekw1, ~51!

where

Pn,k
6 ~a,b!56

2an

a1 ib

s6n

~a2 ib !k F2,1S 12k,17n;2;
2a

a1 ib D .

~52!

Hence we obtain the hyperbolic functions inw2 in terms of
the eigenfunctionsekw1:

H sinh 2anw2

cosh 2anw2
J 5 (

k50

`

Qn,k
6 ekw1, ~53!

where

Qn,k
6 5Qn,k

6 ~a,b!5 1
2 @Pn,k

1 ~a,b!6Pn,k
2 ~a,b!#. ~54!

We now write down the boundary conditions~13! and ~14!
for the upper cylinder using Eqs.~43! and ~46! for f1

(1) and
f1

(2) , Eqs.~44! and~53! for f2
(1) , and Eq.~48! for f (app) and

then eliminateCk
1 andDk

1 . This generates two sets of equ
tions: those in cos(2k21)u and those in sin 2ku. These turn
out to be

nAk
12 (

n51

`

Qn,2k21
2,r An

22 (
n51

`

Qn,2k21
1,i Bn

25dk,1 , ~55!
e

e-
the
-

,

nBk
12 (

n51

`

Qn,2k
2,i An

22 (
n51

`

Qn,2k
1,r Bn

250, ~56!

where the superscriptsr and i denote the real and imaginar
parts, respectively.

We now match the outer potentialf @Eq. ~45!# ~and its
normal derivative!, with f2

(2) across the boundaries of th
lower two cylinders. In this case everything is to be e
pressed in terms of the eigenfunctions appropriate to
lower cylinder pair. These are the functionse22akw2. In par-
ticular, this must also be done for the applied potential wh
is again just Eq.~23! with w2 in place ofw. We also use
Eqs.~41! and~42! to express the exponentials inw1 in terms
of those inw2 and obtain

e2nw15
1

~a2 ib !n S 12 s/s

12s D n

, s5se22aw2. ~57!

The convergent expansion of Eq.~57! along the lower right-
hand cylinder using Eq.~26! is assured since on this bound
ary u,0 and sousu,1. Hence, using Eqs.~26! and~57! we
find that

e2nw15 (
k50

`

Rn,k~a,b!e22akw2, ~58!

where

Rn,k~a,b!5
2an

a1 ib

sk

~a2 ib !n F2,1S 12k,12n;2;
2a

a1 ib D .

~59!

We now apply the boundary conditions~13! and~14! on the
lower cylinder pair using Eqs.~44! and ~47! for f2

(1) and
f2

(2) , Eqs.~43! and ~58! for f1
(1) , and Eq.~23! ~in w2! for

f (app) and then eliminate the coefficientsCk
2 andDk

2 . After
separating coefficients of cos 2akv and sin 2akv in the result
we obtain the following equations:

~n1mk!Ak
22 (

n51

`

R̃n,k
e,i Bn

12 (
n51

`

R̃n,k
o,r An

152amk, ~60!

~n1mk!Bk
22 (

n51

`

R̃n,k
o,i An

11 (
n51

`

R̃n,k
e,r Bn

150, ~61!

where again the superscriptsr and i denote real and imagi
nary parts, respectively, and

R̃
n,k
$o
e%

5mkR$2n21
2n %,k . ~62!

The set~55!, ~56!, ~60!, and ~61! is now expressed in the
~truncated! form ~4!:

~nI4m1Sm
~ tri!!•Xm5Ym , ~63!
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where

Xm5S Am
1

¯

Bm
1

¯

Am
2

¯

Bm
2

D , Ym5S Dm

¯

Om

¯

Km

¯

Om

D , ~64!

and with a structure matrix

Sm
~ tri!5S ¯

2R̃m
o,r

¯

2R̃m
o,i

O2m

¯

]

]

]

¯

2R̃m
e,i

¯

R̃m
e,r

]

]

]

]

]

]

]

2Qm
2,r

¯

2Qm
2,i

¯

Em

¯

Om

]

]

]

]

]

]

]

2Qm
1,i

¯

Qm
1,r

¯

Om

¯

Em

D , ~65!
he

s

o
r o

lu
ll-
n
m

lip
d

b
al

indi-
osi-

ro-
nts.
lop
s of
all
the
ters
ular

tter
ny
in-

the
re

ll re-
cs.
r-
in
the

ent
ent
iz-

two
so-
er-
is

-
.

-
ase
he

ked
where theAm
6 andBm

6 denote the vectors of coefficientsAi
6

and Bi
6 , respectively, theR̃m

p,q and the Qm
6,q ~p5o,e;

q5r ,i ! are matrices of elementsR̃i , j
p,q and Qi , j

6,q , respec-
tively, andDm is the column vector with elementsd1 j .

In this case the overall polarization will be the sum of t
contributions of the upper cylinder~the A1

1 term! and of the
lower cylinder pair~the An

2 terms!. Hence for the triangular
cluster we obtain

^x& tri5
2

3 S A1
114a(

n51

m

nAn
2D ~66!

which leads to the spectral representation~1! in which

gn5
2

3 S u1n14a(
k51

m

ku2m1k,nD S ūn112a(
k51

2m

mkūn,2m1kD ,

Ln5 1
2 ~12tn!, ~67!

where, again, theui j andūi j are the elements of the matrice
that diagonalize the structure matrixSm

(tri) and thetn are the
eigenvalues of this matrix.

V. APPLICATION OF THE TECHNIQUE

Interest in effective medium theory is currently being m
tivated by the desire to understand the optical behavio
composite thin films@16,17#. Of particular interest in this
regard are films formed by the deposition of metallic inc
sions into a columnar dielectric matrix. The Maxwe
Garnett and Bruggeman formulations still dominate whe
comes to interpretation of experimental data for such co
posites. Lately, for example, inversion of spectroscopic el
sometric data with these simple models has been use
obtain fill factors for voids in thin coatings@18#. In such
interpretive work, knowledge of the detailed make-up of o
served absorption peaks in the overall response is cruci
-
f

-

it
-
-
to

-
in

determining geometric parameters. What appears as an
vidual resonance may in fact be the accumulated superp
tion of several of these. The unfounded~and often false!
assumptions of this type, which then arise, are bound to p
duce suspect values for the sought-after structural consta

The problem theoretically has of course been to deve
expressions for effective dielectric responses as function
the given geometry within which are also differentiated
the individual resonances. The merit of the work done in
preceding sections is that such a method for finite clus
has been developed and successfully applied to rectang
and triangular cylinder arrangements. It is a simple ma
~see Sec. VI! to show that the technique is applicable to a
arrangement at all that consists of a finite number of non
tersecting circular cylinders. However, an examination of
numerous experimental implications thrown up by this mo
general scenario merits a separate study. Here we sha
strict ourselves to predictions made by the formulas of Se
III and IV for the rectangular and triangular clusters. In pa
ticular we shall consider the case of aluminum cylinders
air and focus on the distribution of resonances producing
absorption profiles.

We begin with two special cases, the square arrangem
of four cylinders and the equilateral triangular arrangem
of three cylinders. Plots of the imaginary part of the polar
ability using Eqs.~39! and~40! and Eqs.~66! and~67! have
been determined and are both shown in Fig. 4, each for
different intercylinder spacings. In both cases the single i
lated cylinder response is included for comparison. The ov
all similarity in the responses of the two arrangements
striking. An examination of the first few individual reso
nances for the caseb5d51.1 in the square is shown in Fig
5~a! and for the analogous case~l 52.2,w5p/6! in the equi-
lateral triangle in Fig. 5~b!. Few of the corresponding absorp
tion peaks discernible in Fig. 4 in this close-approach c
represent the contribution of only a single resonance. T
overlap between individual resonances is particularly mar
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in the rectangular cluster, although for the equilateral trian
there is relatively little of this overlap between the fir
couple of resonances. Further investigation revealed that
overlapping phenomenon continued to manifest itself in
case of the remaining peaks apparent in Fig. 4 for this p
ticular intercylinder spacing. This, however, is to be e
pected since asn increases both the eigenvaluestn and the
spectral weightsgn approach zero. There will thus always b
an accumulation of successively less intense resona
closer and closer toe8521. In other words the higher orde
resonances accumulate at a wavelengthlc satisfying
e8(lc)521. We also note that the small sharp peak appe
ing nearl50.1mm in the responses of the isolated cylinde
is not a resonance but merely an artifact of the optical c
stant. Its effect disappears completely in the presence of
cluster interactions.

The interesting aspect of the square and equilateral ge
etries of Figs. 4 and 5 is that both longitudinal and transve
responses will be the same. For the equilateral triang
simple geometric argument suffices to demonstrate this
useful check on our results can be deduced from this ob
vation. We first consider the general response function in
form ~10! and note that by Keller’s theorem the orthogon
response is obtained by merely replacingn with 2n. In other
words the orthogonal result is obtained just by replacing
original set of eigenvalues by their negative counterpa
Therefore, for both the square and equilateral triangular

FIG. 4. ~a! The imaginary part of the polarizability for a squa
cluster (b5d) of aluminum cylinders in air. Response curves a
function of wavelengthl are shown for the cased51.1 ~dotted!,
d51.5 ~dashed!, and d5` ~solid!. ~b! The imaginary part of the
polarizability for equilateral triangular clusters of unit circular cy
inders (b5)d). Response curves as a function of wavelengthl
are shown ford51.1 ~dotted!, d51.5 ~dashed!, andd5` ~solid!.
The casesd5` correspond to a single isolated cylinder.
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rangements the respective eigenvalue sets must be inva
under sign change. This can only be the case if the eigen
ues appear in positive-negative pairs of the form$tk ,2tk%.
Moreover the eigenvalues in each pair will share a comm
spectral weightgk . Tables I and II show the first few eigen
values and spectral weights corresponding to the resona
shown in Fig. 5@the square (b5d51.1) and equilateral tri-
angle~l 52.2, w5p/6!#. As we see in Table I, the expecte
pattern in the eigenvalues for the square cluster does ind
appear. The expected pattern of eigenvalues also appea
Table II for the triangular cluster, but in an unexpected w
Here the eigenvalues actually appear in triplets of the fo
$tk9 ,tk8 ,2tk8%. The members of the positive-negative pair6tk8
share the same weightgk8 while the weight of the ‘‘odd one

FIG. 5. The resonant structures for~a! the square and~b! the
equilateral triangular clusters in the cased51.1. Individual plots
corresponding to the first four eigenvalue sets~displayed in Tables
I and II! are shown. Resonances corresponding to the pos
~solid! and negative~dashed! eigenvaluestn are shown.

TABLE I. The first four sets of eigenvalue pairs for the squa
cylinder cluster withb5d51.1. Also shown are the correspondin
spectral weights,gn , and the depolarization factors,Ln .

n tn gn Ln

1 0.405 390 0.029 665 0.297 305
2 20.405 390 0.029 665 0.702 695

3 0.345 673 0.142 873 0.327 163
4 20.345 673 0.142 874 0.672 836

5 0.155 120 0.056 157 0.422 440
6 20.155 106 0.056 180 0.577 553

7 0.121 042 0.096 354 0.439 479
8 20.121 008 0.096 452 0.560 504
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out,’’ tk9 , is precisely zero. Hence the equivalence in
response for both directions is also guaranteed for the e
lateral triangular cluster.

A useful check on the correctness and degree of accu
of the method is the satisfaction of the sum rule~3! for the
spectral weightsgn . In every case considered this sum ru
was satisfied once the truncation order had become s
ciently large. In fact, the nearness of the total sum to un
acts as a useful measure of the accuracy achieved for a g
truncation order.

Another way of gaining some insight into the relationsh
between geometric arrangement and resonant distributio
to consider triangular clusters with differing internal angle
In Fig. 6 we plot the absorption profiles for three differe
triangular geometries. In each casel 52.2. We consider a
collinear arrangement (w5p/2) and two others~w5p/3,
w5p/6!. The last one is the equilateral case treated earlie
is included here for the sake of comparison. Detailed insp
tion of the resonant structure of the two noncollinear ca
again reveals that the absorption peaks in these cases
from multiple overlapping of individual resonances. How

TABLE II. The first four sets of eigenvalue triplets for the equ
lateral triangular cylinder cluster withl 52.2 andf5p/6. Also
shown are the corresponding spectral weights,gn , and the depolar-
ization factors,Ln .

n tn gn Ln

1 0.648 844 0.000 000 0.175 578
2 0.434 769 0.069 010 0.282 615
3 20.434 769 0.069 011 0.717 384

4 0.329 847 0.000 000 0.335 077
5 0.307 517 0.117 074 0.346 242
6 20.307 514 0.117 075 0.653 757

7 0.185 782 0.000 000 0.407 109
8 0.158 878 0.088 783 0.420 561
9 20.158 877 0.088 783 0.579 438

10 0.103 340 0.000 000 0.448 330
11 0.098 597 0.075 077 0.450 702
12 20.098 595 0.075 077 0.549 298

FIG. 6. Response curves for three different triangular arran
ments of aluminum cylinders in air. The imaginary part of the p
larizability as a function of wavelengthl is plotted forl 52.2 and
w5p/2 ~collinear arrangement, shown dotted!, w5p/3 ~shown
dashed!, andw5p/6 ~equilateral arrangement, shown solid!.
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ever, in the collinear geometry, the observed peak
l50.155mm is effectively the single resonance correspon
ing to the first positive eigenvalue. The first four resonan
with non-negligible weights for this collinear arrangeme
are plotted in Fig. 7.

Unlike the square and~nondegenerate! triangular arrange-
ments, the collinear case shown in Figs. 6 and 7 exhibits
isolated first or fundamental polarization mode. It is intere
ing to note that this type of response is also observed for
case of two cylinders@10# and for an infinite chain of meta
cylinders@11#. It would seem that collinear or chainlike a
rangements tend to produce this type of behavior. This
obvious significance when the simple dipole models are u
to fit such curves.

VI. SOLUTION FOR A GENERAL CLUSTER

It is now quite a simple matter to show that the foregoi
superposition technique can be used for any finite cluste
identical nonintersecting cylinders. The sum of any fin
number of harmonic functions that vanish at infinity is aga
a harmonic function vanishing at infinity and so all we ne
to show is that the relevant convergence requirements
always be met. We shall first consider a completely gene
finite cluster with no exploitable symmetries and then mo
on to a consideration of those with at least one axis of sy
metry.

For a cluster admitting no symmetry axes we simply co
sider each individual cylinder as a subcluster and assign
appropriately centered polar frame to each one. Hence
such a cluster consisting ofn cylinders we will haven polar
frames and consequently an outer potential that is the sum
the n local outer potentials. Checking the convergence
quirement between any two polar frames is straightforwa
Consider then two unit cylinders@~1! and ~2!, say# centered
at the pointsz50 andz5a with local framesw15 ln z and
w25 ln(z2a), respectively. The outer potential in the loc
framew1 for cylinder ~1! will be a series in powers ofe2w1

and the eigenfunctions for cylinder~2! will be the functions
ekw2. Hence we consider

e2nw15z2n5a2nS 11
ew2

a D 2n

. ~68!

For nonintersecting cylindersuau>2. Moreover,uew2u51 on
the boundary of cylinder~2! and so we can expand the bino

e-
-

FIG. 7. Resonances corresponding to those positive eigenva
tn with the four greatest weightsgn for the collinear arrangemen
~l 52.2, w5p/2! of three aluminum cylinders in air.



of
ee
th

ra

m
w
uc
rr
hu
th
i

th

To
-
c
lin
-
al
in
th

in
fte
c

d
A
ge
e

-

o
r
av

la

h
po
us
d

in
e
th
y
d
d
o

h
n
e
t
la

rian-
eld
ntal

s
of
ap-
ger
ion
ica-

rs
cil
l-
say
et-
lso

ne
te
c-

ted

for
e

1110 PRE 58A. J. REUBEN AND G. B. SMITH
mial in Eq. ~68! in a convergent series in positive powers
ew2 along this boundary. The convergence criteria betw
arbitrary polar coordinate frames are thus met and so
superposition technique will work in this completely gene
case.

We now briefly consider cylinder arrangements that ad
at leastone symmetry axis. The advantage here is that
can usually make use of the symmetries in order to red
the number of coordinate frames used. This leads to a co
sponding reduction in the number of coefficient sets and t
also in the matrix sizes. This is exemplified in the case of
rectangular cluster of Sec. III. We consider an orientation
which the chosen symmetry axis is vertical and note that
individual cylinders in the cluster will either~i! lie centered
on the given symmetry axis, or~ii ! lie in image pairs to the
left and right of this axis. We then proceed as follows.
each cylinder in category~i! we assign the appropriately cen
tered polar coordinate frame and write inner and outer lo
potentials in terms of these polar coordinates. For the cy
der pairs in category~ii ! we operate similarly with the ap
propriately positioned bicylindrical coordinates. Hence
the frames will share a common central axis. The total
duced potential outside the cluster will be the sum of
local outer potentials. The matrix equation~4! for all the
outer coefficients is then obtained by successively match
this sum on each single cylinder and cylinder pair one a
the other and then eliminating all inner coefficients. For ea
matching all eigenfunction expansions are reexpresse
terms of the local variables for a given boundary contour.
we need to do is show that these expansions of the ei
functions are always convergent on the given cylind
boundary. These expansions will occur between either~a!
one bicylindrical frame and another and/or~b! a bicylindrical
frame and a polar frame and/or~c! one polar frame and an
other. The solution obtained in Sec. III shows that case~a! is
possible when both bicylindrical frames have the same p
positions. In Appendix A we show that the convergence c
teria are also satisfied between two bicylindrical frames h
ing different pole positions. Hence case~a! is always solv-
able. The solution obtained in Sec. IV for the triangu
cluster immediately disposes of case~b! and for case~c! the
required convergence property between two polar frames
been demonstrated in the preceding paragraph. A super
tion of bicylindrical and polar coordinate frames can th
always be used to find the quasistatic response for cylin
clusters with the above-mentioned symmetry property.

VII. CONCLUSION

We have shown that a superposition technique employ
combinations of polar and/or bicylindrical coordinate fram
can provide an explicit normal-mode representation for
response of any finite cluster of identical nonintersecting c
inders. The method leads quite naturally to the Bergman
composition. Moreover, there are no restrictions on the
electric constants of the two phases nor on the proximity
cylinders to each other. The major strength of the approac
that the detailed resonant structure of any response ca
readily probed. In particular, we have unearthed evidenc
suggest that in most clusters one can expect many of
absorption peaks to be the result of aggregates of over
n
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ping resonances. The exception seems to be for some t
gular structures and for chainlike structures when the fi
acts along the chain axis. In these instances the fundame
mode ~the n51 resonance! may often remain more or les
isolated from all the higher-order modes. Further study
more extensive chains and rectangular clusters with this
proach may confirm these tentative conclusions for lar
and more general clusters. Concurrent work in this direct
is being pursued and should appear in forthcoming publ
tions.
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APPENDIX A

In the general arrangement of four unit cylinders with o
axis of symmetry, we consider two bicylindrical coordina
frames,w1 andw2 , for the upper and lower pairs, respe
tively. If the corresponding pole positions are denoteda6 ,
then the respective cylinder centers will be deno
(6d1,b) and (6d2 ,2b), where

d65A11a6
2 . ~A1!

We thus have

w65
1

2a6
lnS z1a62 ib

z2a62 ib D . ~A2!

Suppose we are expanding the local potential expansion
the lower pair around the upper right-hand cylinder. W
must then expand exponentials inw2 in terms of exponen-
tials in w1 . We need only do one case. For instance,

e2a2nw25S z1a21 ib

z2a21 ib D n

~A3!

5%nS 12 z/%2

12z D n

, ~A4!

where

%5
a11a212ib

a12a212ib
~A5!

and

z5%e22a1w1. ~A6!

Along the upper right-hand cylinder we have

ue22a1u1u5e22a1u15
1

a11A11a1
2

. ~A7!
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Convergence will thus be guaranteed when

uz1u5%e22a1u15
1

a11A11a1
2 S ~a11a2!214b2

~a12a2!214b2D 1/2

<1.

~A8!

For nonintersecting cylinders we require the center-to-ce
distance between the right-hand cylinders to be greater
two units. This condition is

2D5a1
2 1a2

2 1222A11a1
2 A11a2

2 14b2>0. ~A9!

The square ofuz1u can thus be rewritten
f

,

. B
er
an

~112a1
2 22a1A11a1

2 !

3
D1A11a1

2 A11a2
2 111a1a2

D1A11a1
2 A11a2

2 112a1a2

,

~A10!

which is a monotonically decreasing function ofD for all
positivea1 anda2 . Hence its maximum value will occur on
D50. This is attained alonga150 and is precisely unity.
Hence the necessary and sufficient condition for the su
position of arbitrary bicylindrical frames with a commo
axis of symmetry is assured.
s.
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