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Normal-mode decomposition for the optical response of cylinder clusters
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We present a powerful technique that generates the complete normal-mode representation for the two-
dimensional quasistatic response afy finite cluster of nonintersecting cylinders. We initially study two
particular structures, a rectangular and then a triangular arrangement of cylinders. In each case a superposition
technique involving two coordinate frames is used to obtain eigenfunction expansions for the induced electro-
static potential. Imposition of boundary conditions at each cylinder surface generates a system of equations for
the expansion coefficients in which optical and geometric factors can be trivially separated. This produces a
so-called structure matrix whose eigenvalues determine the resonance positions for the total response. The
weights for these uncoupled and independent resonances are also readily calculated. Predicted results for the
two chosen arrangements are then given. We conclude by showing how the technique is extended to cover
general finite clusters of nonintersecting cylind¢&1063-651X98)06907-4

PACS numbsg(s): 41.20.Cv, 78.20.Bh, 78.20.Ci, 02.30.Em

I. INTRODUCTION g,=0, 0OsL,<1, (2

Interest in the optical and electrical transport properties of
composite materials has a long hist¢fy. The standard av- 2 On=1. ©)
eraging methods for random arrays such as the Maxwell- n
Garnet[2], Lorentz-LorenZ3,4], Bruggeman, and Clausius-

Mossotti formulations are essentially dipole theories with N Secs. lll and 1V a technique will be applied to both
limited applicability. Interest has come to center on the quesf€ctangular and triangular clusters of cylinders that yields

tion of the importance of long-range interactions for bothc@MPléte normal-mode Bergman decompositions in each

ordered and disordered particulate arrays as well as on tHf¢gdSe. Moreover, there are no restrictions on the dielectric
effect of a close approach between individual particles. on&onstants of elther_ host_or inclusion. Hence it is expected th_at
way of gaining insight into such questions is to considerthis @pproach, which will be extended to general clusters in
finite clusters. In particular, one would like to understandS€¢: VI, should find wide application. »

how a given geometric arrangement of particles determines | N€ téchnique used here always leads to an explicit Berg-
the polarizability. In general the most accessible problem&"@n decomposition for the polarizability. This is because the

seem to be those involving ordered arrays of infinite extenYStém of equations defining the coefficients in the series

or finite clusters that rarely involve more than two particles 8XPansion for the external field takes the following fdii

The generallyad hocmethods used in these instances have

tended to employ imaging or conformal mapping methods.

In all but a handful of these approaches major disadvantages

tend to surface. Moreover, the very general formalisms thap/here

have appeared are rarely of practical use in concrete situa- .

tions. Only in a few have the individual resonances for the v=—1-2x ®)

polarization been determined together with their correspond-

ing strengthg5,6]. In this work we solve this problem for andX is the sought-after vector of potential coefficierts

any finite cluster of circular cylinders. Y a vector of constanty;, | the unit matrix, andS the
Although for the general dynamic problem there is as ye0-calledstructure matrix which only depends on the geo-

no general theory relating the optical properties of a composmetric arrangement of the cylinders in the cluster.

ite to its geometry, in the quasistatic realm the closest thing Diagonalizing the structure matri® leads to

to this is the Bergman spectral representatj@dh In this

(vI+9)-X=Y, (4)

formulation the average dielectric functiéper unit areaof U t.su=T, (6)
a two-component system of relative dielecteibas the rep- o
resentation whereU and its inverse are matrices of elememtsandu; ,

respectively, andr is the diagonal matrix whose elements
areg;jt;, thet; being the eigenvalues & Consequently Eq.
=> I —e—1 (1)  (4) becomes
<X> = X_1+ I—n X ’
(vI+T)-X'=Y', )
where the spectral weightg, and depolarization factots,,
satisfy where
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1102 A. J. REUBEN AND G. B. SMITH PRE 58
X! X generate the flux lines for this direction, while the replace-
[Y’} =Uu" Y}' (8)  ment of dielectric constants with their reciprocals will auto-
matically produce the potential for the orthogonal direction
Solving Eq.(7) for X’ and then applying Eq8) leads to (Keller's theorem[12]). Together these two solutions can
then provide polarizations for arbitrary field directions sim-

uikUkjyj ply by combining components of each in varying propor-
x=2 — = 9
Tk vty lons.
The key to the following approach is to note that the
The polarizability will be found by determining therl¢o-  induced electrostatic potentials are harmonic functions that

efficient in the far-field expansion of the induced externalvanish at infinity and hence th#lte sum of any two such
potential. As will be shown in the following sections, this functions is again a valid outer potentidiVe thus partition
will turn out to be a linear combination of the potential co- the whole cluster into a set of subclusters and define the
efficients. Hence for some sequence of positive consfiants “local” coordinate frame for a given subcluster to be a
we will obtain frame that contains a coordinate contour representing the
, boundary(or boundariesof the cylindefts) in the given sub-
B On cluster. We write down inner and outer potential expansions
<X>_; v+t,’ (10 for each subcluster in their respective local coordinates. Each
subcluster will thus contribute its own local external poten-
where tial and the total induced potential will be the sum of these.
All that remains to be done is to satisfy the appropriate
9= f,u Uy . (11) boundary conditions at each cylinder surface. The sets of
no4y Tl coefficients are found from the system of equati¢isgen-
erated by successive imposition of the boundary conditions
We thus obtain the full Bergman representatidn with  within each subcluster. The crucial feature of this approach is

spectral weights and depolarization factors given by the ability to reexpand each local eigenfunction expansion in
L L terms of the eigenfunctions in every other local variable in
On=20n, La=32(1-t,). 12 such a way that the resulting series converge on each cylin-

. . . ._der boundary.
All that ther_1 remains to be done is to obtain t_he key equation \ve now consider an applied field of unit strength acting
(4), determine the eigenvalues 8f and then insert the ap-  55q the horizontal axis. At all cylinder boundaries the fol-

propriate constants . , o lowing matching conditions must be satisfied by the outer
We shall exemplify the technique by applying it to a rect-(d)(l)) inner (¢(?), and applied ") potentials:
angular and then to a triangular cluster of identical cylinders. ' '

We consider the infrared limit for which an electrostatic ap- ¢ 4 pD= p(2) (13
proach to the problem of small particles in a constant uni-

form electric field is sufficient. In such a limit the wave- ap@P gL 9@

length of the external field is assumed to be much greater an + n € (14

than the particle diameters and the distances separating the

particles. In this situation the approach outlined above is apoyr approach will be to use the above-mentioned superposi-
plicable and yields a seminumerical solution for any desiredjon technique with subclusters containing either a single cyl-
number of resonance positions and corresponding weightyger or a pair of cylinders. The local coordinate frames cor-
In both the rectangular and triangular clusters the matrixegponding to these subclusters will be the polar and
equation(4) representing the truncated system of equations,icylindrical frames, respective[i10]. The Laplace equation
for the induced potential coefficients will be obtained. Inj, such frames is unchanged and so its solutions will be the
Sec. V we will analyze the eigenvalue spectra and the corregsyal combinations of hyperbolic and trigonometric func-

sponding sets of weights for various possible cylinder arions in the transformed variablgs3]. The bicylindrical co-
rangements in these two cases. We now proceed to introdugginate frame is illustrated in Fig. 1.

the basic background concepts.

lll. RECTANGULAR CLUSTER
Il. METHODOLOGY
) ) We now consider the rectangular array consisting of the

We shall build on recently developed techniques that haveoyr jdentical unit cylinders shown in Fig. 2. The horizontal
all given insights into the responses of either a pair or amng vertical distances separating the cylinder centers are
infinite array of cylindrical inclusiong8—11]. As in these given by 2 and 2, respectively. The external field direc-
earlier studies, the procedure adopted here can be most ljon will be along the horizontal) axis and so we introduce
cidly presented by working throughout in terms of appropri-the complex variable=x-+iy and express the applied po-
ate complex variables. This also provides the possibility ofential everywhere as the real part of

making a more concise presentation of the mathematical ma-

chinery. Moreover, by obtaining the potential induced for PP =7 (15

any one given field direction as the real part of a complex

series expansion, all other information is also found. TheWe shall consider the response for this geometry as resulting
corresponding imaginary part of the induced potential willfrom the interaction between the upper and lower cylinder
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For cylinder pairs with center-to-center separation dft@e
equation defining the boundary of the right-hand unit cylin-
der will be given byu=u; where[10]

1
a=+\d>-1, u=o- In(a+V1+a?). (18

The total outer potentiab will be taken as the sum of the
outer potentials around the upper and lower pad’:%,) and
»Y | respectively. Moreover, these potentials will each be
eigenfunction expansions in terms of their respective local
variables,w... Due to the presence of the other pair, the
individual outer potentials,qs(il), will not be symmetric
about their respective horizontal axébe linesy= *+b).
These local outer potentials must therefore contain terms in
both sin Z2anv and cos 2nv and will thus be given by the
real parts of the following expressions:

y axis

X axis

©

FIG. 1. The bicylindrical coordinate frame showing contours of i .. .
constantu (solid) and constant (dashedl The boundaries of the P’ = 21 A;sinh 2anw. —iBcosh Zanw.. . (19
unit cylinders centered on theaxis atd=*=1.1 are shown in bold. n=

) ) _ . The same symmetry considerations generate potentials valid
pairs. The local coordinate system for the upper pair will beipside the upper and lower right-hand cylinders. These will

the transformed variable, where be the real parts of
1 z—ib+a ”
= i - N — (2) — iy E\a—2anw.
W,=U,+iv, a In >=ib—a’ (16) 3 gl (C,—iD,)e . (20

which is just the bicylindrical frame shifted upwards from 1he total inducedoutey potential will then be given by the
the x axis by an amounb. Analogously the corresponding real part of

local coordinate system for the lower pair will be generated D)L (D)
by the transformation p=¢ i+ (21)

_ There are thus eight coefficients in all. However, since the

1 N z+ib+a 17 functions cosh @nw.. are even inz+ib, only the coeffi-

~2a  z+ib—a’ cients A, of the functions sinh@nw. need to be deter-

mined explicitly in order to find the polarizability. The mag-

020w,) nitudes of the coefficientsB, reflect the degree of
interaction between the pairs and vanistbasc. There are
four boundary conditions, two on the upper cylinder pair and
two on the lower pair. Each of these equations will involve
series in both cosénv. and sin 2nv . . These can thus in
turn be separated into two equations and so the total number
of equations becomes eight, as required.

. The procedure for now building the system of equations
which defines the coefficients is successively to match the
potential and its normal derivativé ¢/Jn with the appro-
priate internal potentials across the upper and lower cylinder
pair boundaries. In the former case everything is to be ex-
pressed in terms of the upper variabls,, and in the latter,
in terms of the lower variablesy_ . Due to the symmetry of

@ the problem about the horizontal axis, each upper coefficient

0-700) will mirror the corresponding lower one. In fact, once the
FIG. 2. A rectangular arrangement of circular unit cyIinders.matCh_Ing is performed on the Upper pair, the corresponding

The cylinders are centered at the pointsd, =b). The cluster is equatlpns fo.r the lower matching Cjan be found by merely

partitioned into an upper and lower pérach shown boxagdwhich replacingb with - b ever_y\{v_here. It will be found convenient

have respective bicylindrical coordinate frames, , assigned to 0 use the following definitions:

them. The corresponding innes{®) and outer ¢'¥) potentials

are indicated. The total induced outer potentislis the sum of the p= 1+a2/b2

individual outer potential contributions. '

W_=u_+iv_

a
w=tan ! o (22)
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So, in matching on the upper pair, the variable in whichwhere
we work isw, . The eigenfunction expansion for the applied
potential z is found from Eg.(16). To within a constant

factor it is given by[10] m, (c)=nI"(k+1)

1 1F 1-k,1—-n;2;1 !
E 2,1 ) n1 1l Ev

* 2
HEP =27 e 2anw (23 @0
n=1

with the F, y(a,b;c;z) denoting the Gaussian hypergeomet-
We must now express the exponentialsvin in terms of the  ric functions[15]. Applying Eq.(26) to both Eq.(24) and its
eigenfunctione 22"+ in Eq. (23). We have from Eqs(16) reciprocal produces
and(17) that

- [1—slp?\" 1 .
2anw_ _ Na—inw eiZanW_:in — — | p*he*inw
e p'e ( 1—s ) , (24 2P
where - 1 .
X > F2,1<1—k,11n;2;1—? prelkme2ak.
k=0
a'- —
s=|1+pile 2awy (25 (28)

We would like to be able to expand the express{@d) in
the appropriate powers &f such that the result converges
along the upper right-hand cylinder. Now it turns out that the
expression in brackets in EQ4) is effectively the generat-

This immediately leads to the following expansions for the
hyperbolic functions inw_ :

ing function for the so-called Meixner polynomidi4]. For sinh Zanw °C
|€|<min(1)c|), we have[14,15 lcosh anw]= > (GLE+IGT e 2w (29)
-] k=0 ' ’
1- g/c)" = )
= m, (c) &Y, 26
( 1-¢ kZO nk(©)€ 26 where

+ [© + 1© n 1 1l\|co _ 1
G;I’js}=G;’;({s}(p,w)=§(1—?){pH"Fz,l(l—k,l—n;Z;l— ;)[ j((k—n)w)tp" "Fod 1-k1N21- 5

sin
© k 30
X{ ginl (KEm@) . (30
|
The real parts of the hyperbolic functiof9) will thus con- e <
tain contributions from both singkv ; and cos akv . In Al (v+uk)— 21 GnicA, — 21 G, B, =2auk,
n= n=

fact, the complex contributions in the coefficients embody

the interaction between the upper and lower pairs and as

b—o (w—0) the termsGrf,f‘ in Eq. (29) will tend to zero.

The proof that the expansiorf29) converge on the upper c c

right-hand unit cylinder appears in Appendix A. By (v+u')— 21 GnicAn + 21 G,iB,=0, (32
We can now write down the boundary conditidh3) i "

along the upper right-hand cylindeu(=u,) using Egs.

(19 and(20) for ¢(+1) and qb(f), respectively, Eqs(19) and  Where

(29) for 'V, and Eq.(23) for ¢@P). By taking real parts in

the resulting equation we will obtain two sets of terms, those

multiplying sin 2akv, and those multiplying cosakv . .

Since these are independent eigenfunctions, we can drop the

outer summation and split the two sets into two separate To obtain the two analogous equations on the lower pair

equations. The second boundary condition, @¢), effected  of cylinders (1_=u,) we everywhere replack with —b.

here by taking derivatives with respectuq , will similarly This generates a pair of equations analogous to B84sand

lead to another two equations. Combining these four equa32) for the lower cylinder pair, which, when compared with

tions to eliminateC, andD, then leads to Egs.(31) and(32), immediately implies

(31)

én,k:Man,k- (33
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Ay =A=A,, B =B,=-B,. (34) © 7!
o, W) ;

Writing the system Eqg€31)—(34) in matrix form leads to
the truncated analog of Ed4). Using the subscripin to
denote truncation to orden, we obtain the following for the
coefficientsA, andB, :

(V|2m+$rr|eco)'xm:Ymr (39

wherel ,, denotes then<Xm unit matrix,

Am Km
Xm: oo , Ym:2 oo (36) (2):
Bm On o)
and the structure matrix is FIG. 3. A triangular arrangement of circular unit cylinders. The
_ ~ upper cylinder is centered on tlyeaxis at the point (&) while the
Em—G,;‘C : G,;'S lower pair of cylinders is centered at the pointsd,0) on thex
S(ﬁr]ecb: : (37) axis. The cluster here is partitioned into two subcluste@rach
B é*ﬁ DR FG‘f’C shown boxeglwith a polar framew, , used for the upper cylinder,
m ’ m m and a bicylindrical framew_ , used for the cylinder pair lying on
where the x axis. Inner @) and outer ¢'1) potentials are indicated.
The total induced outer potentiah, is the sum of the individual
w O 0 w outer potential contributions.
0 w? - 2
E.=| : 'u . o | Kn=2a 'u , 1 z+a )
: . . . W_=—In|——=|=u_+iv_. (42
o -~ 0 um um 2a \z—a

(38) The boundary of the upper unit cylinder is given by =0
with A, and By, denoting the vectors of coefficients and (r=1) while for the lower right-hand cylinder we again have

B,, respectively, theG*:P (p=c,s) being matrices of ele- Eq. (18). i }
mentsG=" andO.. the null column vector Proceeding as for the rectangular arrangement, we define
i,j m .

The total polarizability of the rectangular cluster will be the two local outer potentials. Each will possess left-right

made up of the sum of the upper and lower cylinder pairsymme_try only _and S0 as before tr_lere will b? two coeffi-
contributions and will only come from the sinla@w terms clents in ea_ch e|g¢nfunct|pn expansion. In partlcular, the up-
in Eq. (19). So, using Eq(34), we obtain[10] per expansions will contain terms in both &ifand coské.

For the upper cylinder the appropriate form is thus the real

o part of
(X)rec=2a 2, NA,. (39 .

¢ D=2 Afe n-Lwi_jgre 2. (43)

The spectral decomposition for the rectangular cluster is thus n=1
Eq. (1) with while for the lower pair it is, as before, the real part of

m m
pa2 - 11— -
gn=4a .21 ,Zl | itinUn, - Ln=2(1=tn), (40 ¢P=> A, sinh2anw_—iB,coshanw_, (44
n=1

for n=1,...,2m, where theu;; andu;; are the elements of the
matricesU and U which diagonalize the structure matrix
S and thet, are the eigenvalues of this matrix.

and so the total induced potential for the triangular arrange-
ment will be the real part of

p=l+ ol (45)
_ _ . . We now write down the complex potentials inside the upper
For the triangular arrangement of unit cylinders shown iNcylinder
Fig. 3 we shall again consider an externally applied field '
acting along the axis. This time we shall use a polar frame

for the upper cylinder and a bicylindrical one for the lower $P =2, Cle@n=Wi_jp e, (46)
pair. For the upper cylinder centeredzatib we have n=1

IV. TRIANGULAR CLUSTER

oo

W, =In(z—ib)=u, +iv,=Inr+i, (41) and inside the lowefright-hand cylinder,

while for the lower pair aligned along theaxis at the points = 2 (Co—iD.)e 2w (47)
z=+d we have =T A
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The matching procedure will occur as before with successive

matching of ¢ [Eq. (45)] and d¢/an first along the upper
cylinder boundarywith ¢?)) and then along the lower cyl-
inder boundariegwith ¢®)). Due to the asymmetry of the
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B~ 2 QuaAn— 2 QusB, =0, (50

cylinder arrangement across the horizontal, the neat corrd?here the superscriptsandi denote the real and imaginary
spondence between upper and lower coefficients seen in tR&'ts, respectively.

rectangular case will not appear in this triangular arrange-

ment.

We now match the outer potentid [Eq. (45)] (and its
normal derivativg, with ¢® across the boundaries of the

For the boundary conditions on the upper cylinder welower two cylinders. In this case everything is to be ex-

write everything in terms of the upper frame variable,

namelyw, . The applied potential, written in terms of,
from Eq. (41), is, to within a constant, just
p@PP =W+, (48)

We now expand the hyperbolic functio) in terms of the
eigenfunction(48). We have from Eqs(41) and (42) that

2anw_ _ __n 1- S/U " 49
e =0 1—s y ( )
where
B e+ B a+ib -
STa—ib’ 77 a—ip (50

Since|a| =1 and on the upper unit cylindég”+| =1 the use
of the expansion(26) will be permissible whenever
a’+b?=1. For nonintersecting cylindee’+b?=3 and so
the expansion of Eq49) using Eq.(26) is always possible
on the upper cylinder.

Using Eq.(26) to expand Eq(49) thus leads to

2anw_ _ 2 Pﬁk(a, b)ekw+,
k=0 '

e* (51
where
P L A PR
(@)= Gk Faal 1 RATMZ g -
(52

Hence we obtain the hyperbolic functionsvin. in terms of
the eigenfunctiong®"+:

sinhanw_| < . .
coshanw_| & Qn.€™, (53
where
Qi k=Qn(ab)=3[P; (a,b)xP  (ab)]. (54

We now write down the boundary conditio3) and (14)
for the upper cylinder using Eq§43) and (46) for ¢'%) and
', Egs.(44) and(53) for ¢, and Eq(48) for ¢(®P and
then eliminateC,” andD,/ . This generates two sets of equa-
tions: those in cos@-1)¢ and those in sinkRA. These turn
out to be

VA =S Qi 1A~ 3 Qiac1Ba=bir (55

pressed in terms of the eigenfunctions appropriate to the
lower cylinder pair. These are the functiogis®®<"-. In par-
ticular, this must also be done for the applied potential which
is again just Eq(23) with w_ in place ofw. We also use
Egs.(41) and(42) to express the exponentialswn, in terms
of those inw_ and obtain

cow,_ L (
¢ T Gmin)"

1-slo
1-s

), s=ge 2@%-_ (57)

The convergent expansion of E&7) along the lower right-
hand cylinder using Eq26) is assured since on this bound-
ary u<0 and sqgs|<1. Hence, using Eq$26) and(57) we
find that

e Wi — E Rn,k(a! b)e—Zakw,,
k=0

(58)
where
Roab=22" @ kime:
nk(a, )—mm 21| 1-k1=n2; ).
(59

We now apply the boundary conditiofs3) and(14) on the
lower cylinder pair using Eqs(44) and (47) for ¢*) and
¢ | Egs.(43) and (58) for ¢Y, and Eq.(23) (in w_) for
4@ and then eliminate the coefficier® andD, . After
separating coefficients of cogaky and sin 2kv in the result
we obtain the following equations:

(v+u9AC= 2, RIBY — 2 ROGAT =2au", (60

(v+ub)B, — nz,l ROIA! + n; RSB =0, (61)

where again the superscriptsandi denote real and imagi-
nary parts, respectively, and

E{{g} — kR on
n,k I {2n*l

bk (62)

The set(55), (56), (60), and (61) is now expressed in the
(truncated form (4):

(Vlam+SI) - Xin=Ypm, (63)
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where
AL Dy,
B O,
Xm: , Ym: , (64)
An Km
B Om
and with a structure matrix
— Q_vr : _ i
m . m
OZm
. _ Q— i : +.r
. m . m
q;rl): ~ cee ~ . . e . , (65)
RO : R En : On
R RE On Em

where theA, andB,, denote the vectors of coefficients” determining geometric parameters. What appears as an indi-
and B;", respectively, theR%? and the Q% (p=o,€; vidual resonance may in fact be the accumulated superposi-
q=r,i) are matrices of element~l§ip'jq and Qi"/, respec- tion of several of these. The unfound_éalnd often falsg
tively, andD,, is the column vector with elementy; . assumptions of this type, which then arise, are bound to pro-
In this case the overall polarization will be the sum of theduce suspect values for the sought-after structural constants.
contributions of the upper cylindéthe A} term) and of the The problem theoretically has of course been to develop

lower cylinder pair(the A, termg. Hence for the triangular expressions for effective dielectric responses as functions of
cluster we obtain " the given geometry within which are also differentiated all

the individual resonances. The merit of the work done in the
preceding sections is that such a method for finite clusters
(66) has been developed and successfully applied to rectangular
and triangular cylinder arrangements. It is a simple matter
which leads to the spectral representatinin which (see Sec. Vito show that the technique is applicable to any
arrangement at all that consists of a finite number of nonin-
zm ) tersecting circular cylinders. However, an examination of the

m

2 _
<X>tri:§ AI+432 nA,
n=1

Upg+ 2ak§_:l #KUn ome numerous experimental implications thrown up by this more
- general scenario merits a separate study. Here we shall re-
L,=%(1-t,), (67) strict ourselves to predictions mad<=T by the formulas of Secs.

Il and IV for the rectangular and triangular clusters. In par-

where, again, the; andUij are the elements of the matrices tipular we shall consider.the. case of aluminum cylind'ers in
that diagonalize the structure mati$™ and thet,, are the air and focus on the distribution of resonances producing the

eigenvalues of this matrix. absorption profiles. _
We begin with two special cases, the square arrangement

of four cylinders and the equilateral triangular arrangement
of three cylinders. Plots of the imaginary part of the polariz-
Interest in effective medium theory is currently being mo-ability using Eqs(39) and(40) and Eqs(66) and(67) have
tivated by the desire to understand the optical behavior obeen determined and are both shown in Fig. 4, each for two
composite thin filmg[16,17. Of particular interest in this different intercylinder spacings. In both cases the single iso-
regard are films formed by the deposition of metallic inclu-lated cylinder response is included for comparison. The over-
sions into a columnar dielectric matrix. The Maxwell- all similarity in the responses of the two arrangements is
Garnett and Bruggeman formulations still dominate when itstriking. An examination of the first few individual reso-
comes to interpretation of experimental data for such comnances for the cade=d=1.1 in the square is shown in Fig.
posites. Lately, for example, inversion of spectroscopic ellip-5(a) and for the analogous cafle=2.2, ¢ = 7/6) in the equi-
sometric data with these simple models has been used tateral triangle in Fig. &). Few of the corresponding absorp-
obtain fill factors for voids in thin coatingkl8]. In such tion peaks discernible in Fig. 4 in this close-approach case
interpretive work, knowledge of the detailed make-up of ob-represent the contribution of only a single resonance. The
served absorption peaks in the overall response is crucial iaverlap between individual resonances is particularly marked

2
gn=§

m
u1n+ 4ak§—:1 ku2m+k,n)

V. APPLICATION OF THE TECHNIQUE
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~
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FIG. 5. The resonant structures f@) the square andb) the
equilateral triangular clusters in the cade1.1. Individual plots
corresponding to the first four eigenvalue s@lisplayed in Tables
I and Il) are shown. Resonances corresponding to the positive
(solid) and negativedashed eigenvalueg, are shown.

FIG. 4. (a) The imaginary part of the polarizability for a square
cluster p=d) of aluminum cylinders in air. Response curves as a
function of wavelength\ are shown for the casg=1.1 (dotted,
d=1.5 (dashegl andd=x (solid). (b) The imaginary part of the
polarizability for equilateral triangular clusters of unit circular cyl-
inders p=v3d). Response curves as a function of wavelength
are shown ford=1.1 (dotted, d=1.5 (dasheg, andd=< (solid).
The casesl=« correspond to a single isolated cylinder.

rangements the respective eigenvalue sets must be invariant
under sign change. This can only be the case if the eigenval-
ues appear in positive-negative pairs of the fdmy, —t,}.
Moreover the eigenvalues in each pair will share a common

in the rectangular cluster, although for the equilateral triangleSpeCtraI weighg. Tab'¢5 | and Il show t_he first few eigen-
there is relatively little of this overlap between the first values gnd_spectral weights corresponding to the resonances
couple of resonances. Further investigation revealed that thEhC)‘l"’r‘I TZFIZQ. 5£the/63qu2rehj=d=1_.l)_ragld (qul:]llateral t”'d
overlapping phenomenon continued to manifest itself in the2N9le(=2.2, ¢ =7/6)]. As we see in Table I, the expecte
case of the remaining peaks apparent in Fig. 4 for this parpattern in the eigenvalues for the square cluster does indeed
ticular intercylinder spacing. This, however, is to be ex-appear. The expgcted pattern of e|ggnvalues also appears in
pected since am increases both the eigenvaluesand the Table Il for'the triangular cluster, but in an pnexpected way.
spectral weights), approach zero. There will thus always be Here the eigenvalues actually appear in triplets of the form

- "oy ! H H P
an accumulation of successively less intense resonancél -tk —ti}- The members of the positive-negative par
closer and closer te’ = — 1. In other words the higher order Share the same weiglgt while the weight of the “odd one
resonances accumulate at a wavelength satisfying
€'(A.)=—1. We also note that the small sharp peak appear- TABLE I. The first four sets of eigenvalue pairs for the square
ing nearx = 0.1 um in the responses of the isolated cylinderscylinder cluster wittb=d=1.1. Also shown are the corresponding
is not a resonance but merely an artifact of the optical conspectral weightsg,, and the depolarization factors, .

stant. Its effect disappears completely in the presence of the

cluster interactions. n th In L

The interesting aspect of the square and equilateral geom- 4 0.405 390 0.029 665 0.297 305
etries of Flgs._ 4 and 5 is that both Iongltudln_al and transverse —0.405 390 0.029 665 0.702 695
responses will be the same. For the equilateral triangle a
simple geometric argument suffices to demonstrate this. A 3 0.345 673 0.142 873 0.327 163
useful check on our results can be deduced from this obser- 4 —0.345 673 0.142 874 0.672 836
vation. We first consider the general response function in its
form (10) and note that by Kgller’s theorpem the orthogonal S 0.155 120 0.056 157 0.422 440
response is obtained by merely replacingith — v. In other 6 —0.155 106 0.056 180 0577553
words the orthogonal result is obtained just by replacing the 7 0.121 042 0.096 354 0.439 479
original set of eigenvalues by their negative counterparts. g —0.121 008 0.096 452 0.560 504

Therefore, for both the square and equilateral triangular ar:
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TABLE IlI. The first four sets of eigenvalue triplets for the equi-
lateral triangular cylinder cluster with=2.2 and ¢= /6. Also
shown are the corresponding spectral weigbis, and the depolar-

30

25
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n=1

1109

ization factorsL,, .

n tn gn I—n
1 0.648 844 0.000 000 0.175578
2 0.434 769 0.069 010 0.282 615
3 —0.434 769 0.069 011 0.717 384
4 0.329 847 0.000 000 0.335077
5 0.307 517 0.117 074 0.346 242
6 —0.307 514 0.117 075 0.653 757
7 0.185 782 0.000 000 0.407 109
8 0.158 878 0.088 783 0.420561
9 —0.158 877 0.088 783 0.579 438
10 0.103 340 0.000 000 0.448 330
11 0.098 597 0.075 077 0.450 702
12 —0.098 595 0.075 077 0.549 298

20
5

e
15 i

n
10 | n=13 \

0.1 0.12 0.14 0.16 0.18 02
wavelength (um)

Im (%)
Imaginary Part of Polarizability

FIG. 7. Resonances corresponding to those positive eigenvalues
t, with the four greatest weightg, for the collinear arrangement
(1=2.2, 9= m/2) of three aluminum cylinders in air.

ever, in the collinear geometry, the observed peak at
N=0.155um is effectively the single resonance correspond-
ing to the first positive eigenvalue. The first four resonances
with non-negligible weights for this collinear arrangement

are plotted in Fig. 7.

Unlike the square anthondegenerajdriangular arrange-
ments, the collinear case shown in Figs. 6 and 7 exhibits an
out,” ty, is precisely zero. Hence the equivalence in theisolated first or fundamental polarization mode. It is interest-
response for both directions is also guaranteed for the equing to note that this type of response is also observed for the
lateral triangular cluster. case of two cylinder§10] and for an infinite chain of metal

A useful check on the correctness and degree of accuraayylinders[11]. It would seem that collinear or chainlike ar-
of the method is the satisfaction of the sum r(8 for the  rangements tend to produce this type of behavior. This has
spectral weightg, . In every case considered this sum rule obvious significance when the simple dipole models are used
was satisfied once the truncation order had become suffio fit such curves.
ciently large. In fact, the nearness of the total sum to unity
acts as a useful measure of the accuracy achieved for a given
truncation order.

Another way of gaining some insight into the relationship It is now quite a simple matter to show that the foregoing
between geometric arrangement and resonant distribution Bperposition technique can be used for any finite cluster of
to consider triangular clusters with differing internal angles.identical nonintersecting cylinders. The sum of any finite
In Fig. 6 we plot the absorption profiles for three different number of harmonic functions that vanish at infinity is again
triangular geometries. In each cake2.2. We consider a @ harmonic function vanishing at infinity and so all we need
collinear arrangementg(=/2) and two othergp==/3, 10 show is that the relevant convergence requirements will
o= m/6). The last one is the equilateral case treated earlier. @lways be met. We shall first consider a completely general
is included here for the sake of comparison. Detailed inspedinite cluster with no exploitable symmetries and then move
tion of the resonant structure of the two noncollinear case§n to a consideration of those with at least one axis of sym-
again reveals that the absorption peaks in these cases restetlry.
from multiple overlapping of individual resonances. How-  For a cluster admitting no symmetry axes we simply con-
sider each individual cylinder as a subcluster and assign the
appropriately centered polar frame to each one. Hence for
such a cluster consisting of cylinders we will haven polar
frames and consequently an outer potential that is the sum of
the n local outer potentials. Checking the convergence re-
guirement between any two polar frames is straightforward.
Consider then two unit cylinderfgl) and (2), say| centered
at the pointz=0 andz= « with local framesw,=In z and
w,=In(z— ), respectively. The outer potential in the local
framew, for cylinder (1) will be a series in powers af "1
and the eigenfunctions for cylind€2) will be the functions
ek"2. Hence we consider

VI. SOLUTION FOR A GENERAL CLUSTER

W W
(=2

m (% )
8 B

Imaginary Part of Polarizability
oy

—
<

o W

008 01 012 014 016 018 02
wavelength (Lm)

FIG. 6. Response curves for three different triangular arrange-
ments of aluminum cylinders in air. The imaginary part of the po-
larizability as a function of wavelengtk is plotted forl =2.2 and
¢=m/2 (collinear arrangement, shown dotiedo= #/3 (shown
dashed, and o= /6 (equilateral arrangement, shown solid

eWz -n
enwlzznzan<1+ 7) . (68)

For nonintersecting cylindets|=2. Moreover,|e"2|=1 on
the boundary of cylindef2) and so we can expand the bino-
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mial in Eq. (68) in a convergent series in positive powers of ping resonances. The exception seems to be for some trian-
e"2 along this boundary. The convergence criteria betweegular structures and for chainlike structures when the field
arbitrary polar coordinate frames are thus met and so thacts along the chain axis. In these instances the fundamental
superposition technique will work in this completely generalmode (the n=1 resonancgemay often remain more or less
case. isolated from all the higher-order modes. Further study of
We now briefly consider cylinder arrangements that admiimore extensive chains and rectangular clusters with this ap-
at leastone symmetry axis. The advantage here is that weroach may confirm these tentative conclusions for larger
can usually make use of the symmetries in order to reducand more general clusters. Concurrent work in this direction
the number of coordinate frames used. This leads to a corrés being pursued and should appear in forthcoming publica-
sponding reduction in the number of coefficient sets and thuions.
also in the matrix sizes. This is exemplified in the case of the

rectangular cluster of Sec. Ill. We consider an orientation in ACKNOWLEDGMENTS
which the chosen symmetry axis is vertical and note that the _ )
individual cylinders in the cluster will eitheii) lie centered This work was undertaken while one of the authors

on the given symmetry axis, @ii) lie in image pairs to the (A.J.R) was supported by an Australian Research Council
left and right of this axis. We then proceed as follows. To(ARC) grant. The authors would like to thank their col-
each cylinder in categorj) we assign the appropriately cen- leagues Ross McPhe_zdran, Nicolae Nicorovici, and Lindsay
tered polar coordinate frame and write inner and outer locaPotten at the University of Sydney’s Department of Theoret-
potentials in terms of these polar coordinates. For the cylinic@l Physics for several helpful discussions. Thanks are also
der pairs in categoryii) we operate similarly with the ap- due to Phillip Abbot for his help with the figures.

propriately positioned bicylindrical coordinates. Hence all

the frames will share a common central axis. The total in- APPENDIX A

duced potential outside the cluster will be the sum of the In th neral arranaement of four unit cvlinders with on
local outer potentials. The matrix equatigd) for all the € general arrangément of four unit cylinders one

outer coefficients is then obtained by successively matchinﬁ)<IS of symmetry, we consider two b|cyl|ndr|cal_ coordinate
this sum on each single cylinder and cylinder pair one afte rames,w.. andw_, for Fhe upper an.d. lower pairs, respec-
the other and then eliminating all inner coefficients. For eacﬁ'VEIy' If the corres_pondlng pole positions are denoted,
matching all eigenfunction expansions are reexpressed if'o\, the resriectwe cylinder centers will be denoted
terms of the local variables for a given boundary contour. Allt=d",0) and (d_,—b), where

we need to do is show that these expansions of the eigen-

_ 2
functions are always convergent on the given cylinder d.=vl+as. (AL)
boundary. These expansions will occur between eithgr
one bicylindrical frame and another and(by a bicylindrical We thus have
frame and a polar frame and/@s) one polar frame and an- 1 z+a.—ib
other. The solution obtained in Sec. lll shows that oasés Wi:Za In z—a—ib)' (A2)

possible when both bicylindrical frames have the same pole
feor-S:ISPeS;QOAS%QE?gg t’?‘e\t’veezzotwght?it?ﬁ dipcgi;gemnecsehcg'?uppose we are expanding the local potential expansion for
rena e IStied betw WO bicyfndri Vihe lower pair around the upper right-hand cylinder. We
ing different pole positions. Hence ca&® is always solv-

. . : : must then expand exponentialswn_ in terms of exponen-
able. The solution obtained in Sec. IV for the triangular . _ .
cluster immediately disposes of ca$® and for caséc) the tials inw, . We need only do one case. For instance,

required convergence property between two polar frames has 74+a_—+ib\"
been demonstrated in the preceding paragraph. A superposi- e2a-"W- = ——a b (A3)
tion of bicylindrical and polar coordinate frames can thus z-a-Tl
always be used to find the quasistatic response for cylinder 1— ¢/02\n
clusters with the above-mentioned symmetry property. — N dle Ad
o'l (A4)
VII. CONCLUSION where
We have shown that a superposition technique employing a,+a_+2ib
combinations of polar and/or bicylindrical coordinate frames =1 "2 +2 (A5)
+ —

can provide an explicit normal-mode representation for the
response of any finite cluster of identical nonintersecting cyI-and
inders. The method leads quite naturally to the Bergman de-
composition. Moreover, there are no restrictions on the di- [=pe 2a:Ws, (A6)
electric constants of the two phases nor on the proximity of

cylinders to each other. The major strength of the approach isjong the upper right-hand cylinder we have
that the detailed resonant structure of any response can be

readily probed. In particular, we have unearthed evidence to 1
suggest that in most clusters one can expect many of the |e™28+Us | =g~ 28+ Us = — (A7)
absorption peaks to be the result of aggregates of overlap- a,+yl+al
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Convergence will thus be guaranteed when

1 1/2

a,+1+a2

(a,+a_)+4b?
(a,—a_)’+4b?

|{4]|=pe 22+t =

=<1

(A8)

NORMAL-MODE DECOMPOSITION FOR THE OPTICA. ..

1111
(1+2a% —2a,\1+a?)
XA+ JVi+aiyl+a®+1+a,a_
A+\1+a21+a?+1-a,a_’
(A10)

For nonintersecting cylinders we require the center-to-center = i _ _
distance between the right-hand cylinders to be greater thafjhich is @ monotonically decreasing function &ffor all

two units. This condition is

2A=a2+a?+2-2\1+a2\1+a%+4b?=0. (A9)

The square of{,| can thus be rewritten

positivea, anda_ . Hence its maximum value will occur on
A=0. This is attained along, =0 and is precisely unity.
Hence the necessary and sufficient condition for the super-
position of arbitrary bicylindrical frames with a common
axis of symmetry is assured.
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